Saarblitz, Wind farm in HDR,, creative commons by-nc-sa 2.0


In WindSim an adapted version of the general-purpose CFD code PHOENICS is used for solving the RANS equations in curvilinear coordinates.

 The numerical procedure is of the finite-volume type in which the original partial differential equations are converted into algebraic finite-volume equations with the aid of discretisation assumptions for the transient, convection, diffusion and source terms. For this purpose, the solution domain is subdivided into a number of control volumes on a mono-block mesh using a conventional staggered-grid approach. All field variables except velocities are stored at the grid nodes, while the velocities themselves are stored at staggered cell-face locations which lie between the nodes.

 For curvilinear coordinates, the default option is to solve the momentum equations in terms of the covariant projections of the velocity vector into the local grid directions on a structured, mono-block, staggered mesh. An alternative exists to employ the GCV method for curvilinear coordinates, whereby cell-centred Cartesian velocities or covariant velocity projections are solved on a structured mono-block or multi-block mesh. The link description for the latter can handle arbitrary block rotations, and therefore can accommodate an unstructured multi-block grid made from relatively simple, structured blocks.

 The finite-volume equations for each variable are derived by integrating the partial differential equations over each control volume. Fully implicit backward differencing is employed for the transient terms, and central differencing is used for the diffusion terms. The convection terms are discretised using hybrid differencing in which the convective terms are approximated by central differences if the cell face Peclet number is less than 2 and otherwise by upwind differencing. At faces where the upwind scheme is used, physical diffusion is omitted altogether. In addition to the upwind and hybrid differencing schemes, PHOENICS is furnished with an extensive set of higher-order convection schemes, which comprise five linear schemes and twelve non-linear schemes. The linear schemes include CDS, QUICK, linear upwind and cubic upwind. The non-linear schemes employ a flux limiter to secure boundedness. These schemes include SMART, H-QUICK, UMIST, SUPERBEE, MINMOD, OSPRE, MUSCL and van-Leer harmonic.

 The integration procedure results in a coupled set of algebraic finite-volume equations which express the value of a variable at a grid node in terms of the values at neighbouring grid points and the nodal value at the old time level.  For unsteady flows, PHOENICS by default solves each of these equations by an implicit method, but the option exists to revert to an explicit method which is stable only when the Courant number is less than or equal to unity.  The explicit method uses old-time neighbour values, whereas the implicit method uses values at the new time level. Although implicit methods allow a much larger Courant number than the explicit methods, it is not unconditionally stable since the non-linearities in the equations often limit numerical stability.

 The finite-volume equations are solved iteratively using the SIMPLEST and IPSA algorithms of Spalding, which are embodied in PHOENICS for the solution of single-phase and two-phase flows, respectively. These algorithms are segregated solution methods which employ pressure-velocity coupling to enforce mass conservation by solving a pressure-correction equation and making corrections to the pressure and velocity fields.

 The GCV method solves the system of algebraic finite-volume equations by using a conjugate-residual linear solver with LU preconditioning, and it uses a segregated pressure-based solver strategy with an additional correction of the cell-centred momentum velocities. This provides faster convergence than conventional one-step face-velocity corrections.

 The PHOENICS Parallel solver subdivides the solution domain into sub-domains (spatial domain decomposition) and assigns each sub-domain to one processor on a multi-core computer. Each sub-domain has storage overlap ("halo" cells) for data exchange between the various sub-domains. The CFD code then runs simultaneously on all the processors, on its own set of data, and data is exchanged between the various sub-domains ( via the "halo" cells ) using MPI (message-passing interface). A point solver is used for whole-field solution of each of the finite-volume equations.

Latest version


Arne R. Gravdahl's picture
Submitted by Arne R. Gravdahl on May 5, 2015 - 10:46am
Turbulence closure
Turbulence model
  • Standard k-epsilon
  • Modified k-epsilon
  • RNG k-epsilon
  • k-epsilon with Yap correction
  • k-omega model of Wilcox
Atmospheric boundary layer
Atmospheric Stability
Atmospheric Stability
Stability model
A transport equation for temperature is solved. Further the influence of the temperature on the wind field is considered by the Boussinesq approximation in the momentum equations. Finally additional source terms depending on the temperature stratification
Forest canopy
Canopy model
The forest model consists of solving the RANS equations in a porous area with additional resistive force terms.
Wind farm
Wind turbine
Rotor model
Wake model
Wind farm range

Content Visibility