To add elements to this list contact admin.


Nicholas Robinson's picture
Submitted by Nicholas Robinson on May 12, 2016 - 4:09pm
Main hypothesis

Uses maximum of eddy-viscosity wake model and a boundary layer wake model at each turbine for each case or timestep.


Submitted by Jonas Schmidt on May 5, 2015 - 10:53am
Main hypothesis

12 RANS simulations of a uniform non-rotating actuator disk were carried out using OpenFOAM version 2.1.1, with k-e turbulence model including additional dissipation near the rotor, a la El-Kasmi and Masson 2008. These 12 simulations form a data base, from which the wake deficit data is interpolated at arbitrary inflow velocities at hub height. This way CFD simulations are used to define a numerical wake model. flapFOAM is a new wind farm modelling software that is currently in development at Fraunhofer IWES.


Submitted by Emmanuel Branlard on May 4, 2015 - 6:11pm
Main hypothesis

Homogeneous Incompressible Newtonian fluid under conservative forces, viscous splitting assumption (separate convection/diffusion steps).

Omnivor is a vortex code that uses Lagrangian tracking of vorticity using low order singular and regularized vortex elements. Bodies may be represented using source elements.

Elements intensities may be a combination of prescribed intensities, intensities determined by solving of non-penetration condition or intensities determined using tabulated profile data and a Lifting line formulation.


Submitted by Gunner Chr. Larsen on May 4, 2015 - 5:57pm
Main hypothesis

- Steady wind farm flow field based on linear superposition of wake contributions

- Wake contributions based on analytical solution of rotationally symmetric boundary layer equations 

- Turbulence closure: Prandtl's mixing length approach


Submitted by Torben Juul Larsen on May 4, 2015 - 5:42pm
Main hypothesis

The Dynamic Wake Meandering method uses the wind speed deficit of the upstream turbine together with a meandering process in order to simulate the incoming flow field of the downstream turbine and thereby enabling detailed analysis of both production and loading through aeroelastic computations. The meandering process causes an intermittent appearance of the flow field with periods of full, half or no wake situation—varying from time to time driven by the low frequency large-scale natural turbulence.


Submitted by Gunner Chr. Larsen on May 4, 2015 - 5:39pm
Main hypothesis

The basic philosophy is to consider wakes as passive tracers continuously emitted from the wind farm turbines. The basic idea is a split of scales in the wake flow field, based on the conjecture that large turbulent eddies are responsible for stochastic wake meandering only, whereas small turbulent eddies are responsible for wake deficit attenuation and expansion in the meandering frame of reference as caused by turbulent mixing.